GARDobes: Primordial cell nano-precursors with organic catalysis, compositional genome and capacity to evolve

نویسندگان

  • Daniel Segré
  • Dafna Ben-Eli
  • Yitzhak Pilpel
چکیده

The Graded Autocatalysis Replication Domain (GARD) model described here depicts an early primordial scenario, prior to the emergence of biopolymers, such as RNA or proteins. The model describes, with the help of statistical chemistry computer simulations, a collection of organic molecular species capable of rudimentary selection and evolution. The GARD model provides a rigorous kinetic analysis of simple sets of chemicals that manifest mutual catalysis. It is shown that catalytic closure can sustain self-replication up to a critical dilution rate, related to the extent of mutual catalysis. The capacity for self-replication in a mutually catalytic set is shown to be a graded property, quantitated by a critical parameter λci. GARD could be a simple model for a primordial scenario, in which replication and catalysis are performed by the same set of molecules. GARDobes are proposed to be entities that embody a GARD system, endowed with a non-DNA "compositional genome", and are presumed to have replicated slowly and imperfectly through mutually catalytic networks. Therefore, they are not bound by the standard cellular size constraints: GARDobes may be as small as a few nanometers, with 20-50 nanometers being rather large and elaborate. Active GARDobes, if ever found on earth or on other planets, would be distinguished by a highly biased organic chemistry, i.e. having only a small subset of the possible molecules of any given class. Their fossils might still bear the hallmarks of such a bias, with narrow spectra of molecules such as Polycyclic Aromatic Hydrocarbons or even with enantiomeric excesses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Sulfonic-based precursors (SAPs) for silica mesostructures: Advances in synthesis and applications

Sulfonic acid-based precursors (SAP) play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfona...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000